Examining State of the Field with Bibliometric Analysis

R Data Visualization

In this post, I will be performing bibliometric analysis to examine state of the field from bibliographic records.

(7 min read)

Tarid Wongvorachan (University of Alberta)https://www.ualberta.ca
2023-03-22

Introduction, import, and convert the data

Show code
#using plain text file. 
file <- c("la.txt")

M <- convert2df(file, dbsource = "wos", format = "plaintext")

Converting your wos collection into a bibliographic dataframe

Done!


Generating affiliation field tag AU_UN from C1:  Done!
Show code
#Summary
results <- biblioAnalysis(M, sep = ";")
S <- summary(object = results, k = 10, pause = FALSE)


MAIN INFORMATION ABOUT DATA

 Timespan                              2007 : 2023 
 Sources (Journals, Books, etc)        238 
 Documents                             500 
 Annual Growth Rate %                  11.85 
 Document Average Age                  4.52 
 Average citations per doc             9.354 
 Average citations per year per doc    1.638 
 References                            11674 
 
DOCUMENT TYPES                     
 article                         162 
 article; book chapter           3 
 article; early access           19 
 article; proceedings paper      1 
 proceedings paper               300 
 review                          11 
 review; book chapter            1 
 review; early access            3 
 
DOCUMENT CONTENTS
 Keywords Plus (ID)                    321 
 Author's Keywords (DE)                1206 
 
AUTHORS
 Authors                               1274 
 Author Appearances                    1722 
 Authors of single-authored docs       47 
 
AUTHORS COLLABORATION
 Single-authored docs                  49 
 Documents per Author                  0.392 
 Co-Authors per Doc                    3.44 
 International co-authorships %        29.8 
 

Annual Scientific Production

 Year    Articles
    2007        1
    2011        1
    2012        4
    2013       15
    2014       14
    2015       17
    2016       41
    2017       70
    2018       76
    2019       62
    2020       53
    2021       66
    2022       52
    2023        6

Annual Percentage Growth Rate 11.85 


Most Productive Authors

       Authors        Articles Authors        Articles Fractionalized
1  OGATA H                  19   OGATA H                         5.33
2  GASEVIC D                16   GASEVIC D                       3.87
3  RIENTIES B               12   RIENTIES B                      3.68
4  YAMADA M                 11   NGUYEN Q                        2.98
5  NGUYEN Q                 10   YAMADA M                        2.85
6  DRACHSLER H               9   IFENTHALER D                    2.57
7  KINSHUK                   8   GIANNAKOS M                     2.33
8  PARDO A                   8   TEMPELAAR D                     2.25
9  FERNANDEZ-MANJON B        7   KINSHUK                         2.16
10 FREIRE M                  7   DRACHSLER H                     2.15


Top manuscripts per citations

                                                                                                                                       Paper         
1  GRELLER W, 2012, EDUC TECHNOL SOC                                                                                                                 
2  SHUM SB, 2012, EDUC TECHNOL SOC                                                                                                                   
3  LU OHT, 2018, EDUC TECHNOL SOC                                                                                                                    
4  JIVET I, 2018, PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE (LAK'18): TOWARDS USER-CENTRED LEARNING ANALYTICS
5  TABUENCA B, 2015, COMPUT EDUC                                                                                                                     
6  LEITNER P, 2017, STUD SYST DECIS CONT                                                                                                             
7  WILLIAMS R, 2011, INT REV RES OPEN DIS                                                                                                            
8  TSAI YS, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17)                                                           
9  JIVET I, 2017, LECT NOTES COMPUT SC                                                                                                               
10 BODILY R, 2017, SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17)                                                          
                             DOI  TC TCperYear   NTC
1  NA                            374     31.17  2.29
2  NA                            260     21.67  1.59
3  NA                            120     20.00 10.39
4  10.1145/3170358.3170421       118     19.67 10.21
5  10.1016/j.compedu.2015.08.004 109     12.11  7.92
6  10.1007/978-3-319-52977-6_1   102     14.57  8.71
7  10.19173/irrodl.v12i3.883      83      6.38  1.00
8  10.1145/3027385.3027400        75     10.71  6.40
9  10.1007/978-3-319-66610-5_7    71     10.14  6.06
10 10.1145/3027385.3027403        71     10.14  6.06


Corresponding Author's Countries

          Country Articles   Freq SCP MCP MCP_Ratio
1  CHINA                52 0.1055  38  14     0.269
2  USA                  48 0.0974  34  14     0.292
3  JAPAN                36 0.0730  30   6     0.167
4  AUSTRALIA            34 0.0690  18  16     0.471
5  SPAIN                28 0.0568  25   3     0.107
6  UNITED KINGDOM       26 0.0527  18   8     0.308
7  GERMANY              23 0.0467  17   6     0.261
8  NETHERLANDS          20 0.0406   9  11     0.550
9  NORWAY               19 0.0385  11   8     0.421
10 CANADA               14 0.0284   7   7     0.500


SCP: Single Country Publications

MCP: Multiple Country Publications


Total Citations per Country

     Country      Total Citations Average Article Citations
1  NETHERLANDS                853                    42.650
2  UNITED KINGDOM             679                    26.115
3  AUSTRALIA                  516                    15.176
4  CHINA                      498                     9.577
5  USA                        319                     6.646
6  JAPAN                      243                     6.750
7  SPAIN                      207                     7.393
8  NORWAY                     174                     9.158
9  AUSTRIA                    147                    18.375
10 GERMANY                    109                     4.739


Most Relevant Sources

                                                                         Sources        Articles
1  SEVENTH INTERNATIONAL LEARNING ANALYTICS & KNOWLEDGE CONFERENCE (LAK'17)                   18
2  INTERACTIVE LEARNING ENVIRONMENTS                                                          16
3  EDUCATIONAL TECHNOLOGY & SOCIETY                                                           15
4  9TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES (EDULEARN17)       12
5  JOURNAL OF LEARNING ANALYTICS                                                              11
6  IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES                                                  9
7  EDULEARN18: 10TH INTERNATIONAL CONFERENCE ON EDUCATION AND NEW LEARNING TECHNOLOGIES        8
8  ETR&D-EDUCATIONAL TECHNOLOGY RESEARCH AND DEVELOPMENT                                       8
9  IEEE 21ST INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES (ICALT 2021)           8
10 JOURNAL OF COMPUTER ASSISTED LEARNING                                                       8


Most Relevant Keywords

   Author Keywords (DE)      Articles Keywords-Plus (ID)     Articles
1    LEARNING ANALYTICS           382            PERFORMANCE       41
2    HIGHER EDUCATION              52            MODEL             31
3    EDUCATIONAL DATA MINING       34            DESIGN            28
4    LEARNING DESIGN               33            FRAMEWORK         25
5    E-LEARNING                    28            EDUCATION         24
6    SELF-REGULATED LEARNING       28            ONLINE            22
7    BLENDED LEARNING              25            STUDENTS          21
8    MACHINE LEARNING              24            ANALYTICS         17
9    ONLINE LEARNING               23            IMPACT            16
10   EDUCATION                     17            ACHIEVEMENT       14
Show code
CR <- citations(M, field = "article", sep = ";")
cbind(CR$Cited[1:20])
                                                                                                    [,1]
LONG PHIL, 2011, EDUCAUSE REVIEW, V46, P31                                                            58
GASEVIC D, 2015, TECHTRENDS, V59, P64, DOI 10.1007/S11528-014-0822-X                                  57
GRELLER W, 2012, EDUC TECHNOL SOC, V15, P42                                                           56
FERGUSON R, 2012, INT J TECHNOL ENHANC, V4, P304, DOI 10.1504/IJTEL.2012.051816                       54
SIEMENS G, 2013, AM BEHAV SCI, V57, P1380, DOI 10.1177/0002764213498851                               42
ARNOLD K.E., 2012, P 2 INT C LEARN AN K, DOI DOI 10.1145/2330601.2330666, 10.1145/2330601.2330666     40
GASEVIC D, 2016, INTERNET HIGH EDUC, V28, P68, DOI 10.1016/J.IHEDUC.2015.10.002                       40
CHATTI MA, 2012, INT J TECHNOL ENHANC, V4, P318, DOI 10.1504/IJTEL.2012.051815                        39
LOCKYER L, 2013, AM BEHAV SCI, V57, P1439, DOI 10.1177/0002764213479367                               39
TEMPELAAR DT, 2015, COMPUT HUM BEHAV, V47, P157, DOI 10.1016/J.CHB.2014.05.038                        37
CLOW D., 2012, P 2 INT C LEARNING A, P134, DOI 10.1145/2330601.2330636, DOI 10.1145/2330601.2330636   31
SLADE S, 2013, AM BEHAV SCI, V57, P1510, DOI 10.1177/0002764213479366                                 29
PAPAMITSIOU Z, 2014, EDUC TECHNOL SOC, V17, P49                                                       28
SCHWENDIMANN BA, 2017, IEEE T LEARN TECHNOL, V10, P30, DOI 10.1109/TLT.2016.2599522                   27
SIEMENS G, 2012, P 2 INT C LEARNING A, DOI 10.1145/2330601.2330661, DOI 10.1145/2330601.2330661       27
VIBERG O, 2018, COMPUT HUM BEHAV, V89, P98, DOI 10.1016/J.CHB.2018.07.027                             27
MACFADYEN LP, 2010, COMPUT EDUC, V54, P588, DOI 10.1016/J.COMPEDU.2009.09.008                         26
AGUDO-PEREGRINA AF, 2014, COMPUT HUM BEHAV, V31, P542, DOI 10.1016/J.CHB.2013.05.031                  24
SHUM SB, 2012, EDUC TECHNOL SOC, V15, P3                                                              24
WISE A. F., 2014, P 4 INT C LEARNING A, P203                                                          23
Show code
#Authors’ Dominance ranking
DF <- dominance(results, k = 10)
DF
                Author Dominance Factor Tot Articles Single-Authored
1             KHALIL M       0.66666667            6               0
2              TSAI YS       0.57142857            7               0
3         IFENTHALER D       0.42857143            7               0
4             NGUYEN Q       0.30000000           10               0
5           RIENTIES B       0.16666667           12               0
6             DAWSON S       0.16666667            6               0
7              EBNER M       0.16666667            6               0
8  RODRIGUEZ-TRIANA MJ       0.16666667            6               0
9             YAMADA M       0.09090909           11               0
10           GASEVIC D       0.06250000           16               0
   Multi-Authored First-Authored Rank by Articles Rank by DF
1               6              4                7          1
2               7              4                5          2
3               7              3                5          3
4              10              3                4          4
5              12              2                2          5
6               6              1                7          5
7               6              1                7          5
8               6              1                7          5
9              11              1                3          9
10             16              1                1         10
Show code
plot(x=results, k=10, pause=FALSE)

Examining relationships between authors with co-citation Analysis

Show code
NetMatrix <- biblioNetwork(M, analysis = "co-citation", network = "references", sep = ";")

net=networkPlot(NetMatrix, weighted=NULL, n = 50, 
                Title = "Co-Citation Network", type = "fruchterman", 
                size=4, size.cex=TRUE, remove.multiple=FALSE, labelsize=1, label.n=10, label.cex=F, edgesize = 10)

Show code
Source=metaTagExtraction(M,"CR_SO",sep=";")

NetMatrix <- biblioNetwork(Source, analysis = "co-citation", network = "sources", sep = ";")

net=networkPlot(NetMatrix, n = 50, Title = "Co-Citation Network-Journal", type = "auto", size.cex=TRUE, size=3, remove.multiple=FALSE, labelsize=1,edgesize = 10, edges.min=5)

Show code
#Author keyword network

A <- cocMatrix(M, Field = "DE", sep = ";")
sort(Matrix::colSums(A), decreasing = TRUE)[1:5]
     LEARNING ANALYTICS        HIGHER EDUCATION 
                    382                      52 
EDUCATIONAL DATA MINING         LEARNING DESIGN 
                     33                      33 
             E-LEARNING 
                     28 
Show code
res <- couplingMap(M, analysis = "authors", field = "CR", n = 250, impact.measure="local",
minfreq = 3, size = 0.5, repel = TRUE)

plot(res$map)

Show code
threeFieldsPlot(M, fields = c("AU", "DE", "SO"), n = c(20, 20, 20))

Examining conceptual structure with co-word analysis

Show code
#Co-occurrences network

# keywords
NetMatrix <- biblioNetwork(M, analysis = "co-occurrences", network = "keywords", sep = ";")

# Plot the network
net = networkPlot(NetMatrix, normalize="association", weighted=T, n = 30, 
                  Title = "Keyword Co-occurrences", type = "fruchterman", 
                  size=TRUE, edgesize = 5, labelsize=0.7, remove.multiple=FALSE, label.cex=TRUE)

Show code
# Conceptual Structure using keywords (method="MCA")
CS <- conceptualStructure(M, field="ID", method="MCA", minDegree=4, clust=5, stemming=FALSE, labelsize=15, documents=20)

Examining keyword usage across time with historiograph

Show code
library(reshape2)
library(ggplot2)

kword <- KeywordGrowth(M, Tag = "DE", sep = ";", top = 15, cdf = TRUE)

DF = melt(kword, id='Year')

# Timeline keywords ggplot
ggplot(DF,aes(x=Year,y=value, group=variable, shape=variable, colour=variable))+
  geom_point()+geom_line()+ 
  scale_shape_manual(values = 1:15)+
  labs(color="Author Keywords")+
  scale_x_continuous(breaks = seq(min(DF$Year), max(DF$Year), by = 5))+
  scale_y_continuous(breaks = seq(0, max(DF$value), by=10))+
  guides(color=guide_legend(title = "Author Keywords"), shape=FALSE)+
  labs(y="Count", variable="Author Keywords", title = "Author's Keywords Usage Evolution Over Time")+
  theme(text = element_text(size = 10))+
  facet_grid(variable ~ .)

Show code
Map=thematicMap(M, field = "ID", n = 250, minfreq = 4,
  stemming = FALSE, size = 0.7, n.labels=5, repel = TRUE)
plot(Map$map)

Examining collaboration with social structure analysis

Show code
NetMatrix <- biblioNetwork(M, analysis = "collaboration",  network = "authors", sep = ";")

net=networkPlot(NetMatrix,  n = 50, Title = "Author collaboration",type = "auto", size=5,size.cex=T,edgesize = 5,labelsize=1, community.repulsion = 0.1)

Show code
NetMatrix <- biblioNetwork(M, analysis = "collaboration",  network = "universities", sep = ";")
net=networkPlot(NetMatrix,  n = 50, Title = "Institution collaboration",type = "auto", size=4,size.cex=F,edgesize = 3,labelsize=1, community.repulsion = 0.05)

Show code
country <- metaTagExtraction(M, Field = "AU_CO", sep = ";")
NetMatrix <- biblioNetwork(country, analysis = "collaboration",  network = "countries", sep = ";")

net=networkPlot(NetMatrix,  n = dim(NetMatrix)[1], Title = "Country collaboration",type = "circle", size=10,size.cex=T,edgesize = 1,labelsize=0.6, cluster="none")

Concluding remarks

Reuse

Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".

Citation

For attribution, please cite this work as

Wongvorachan (2023, March 22). Tarid Wongvorachan: Examining State of the Field with Bibliometric Analysis. Retrieved from https://taridwong.github.io/posts/2023-03-20-bibanalysis/

BibTeX citation

@misc{wongvorachan2023examining,
  author = {Wongvorachan, Tarid},
  title = {Tarid Wongvorachan: Examining State of the Field with Bibliometric Analysis},
  url = {https://taridwong.github.io/posts/2023-03-20-bibanalysis/},
  year = {2023}
}